

Контроллер Enki-esp32

Инструкция по проведения испытаний функционирования программного обеспечения

г. Нижний Новгород

Оглавление

Введение	3
Назначение программного обеспечения	3
Стенд для проведения испытаний	4
Процедура конфигурации и загрузки программного обеспечения в контроллер	6
Процедура проверки функционирования программного обеспечения контроллера	.11

Введение

Данная инструкция содержит описание процедуры установки (загрузки) и проведение испытаний функционирования программного обеспечения контроллера Enki-esp32 выпускаемый ООО «Энки» (<u>http://enkitech.ru/</u>).

Программа создана на языке С. Рабочий экземпляр программы представляет из себя бинарный файл и используется как встроенное программное обеспечение — firmware. Для функционирования программного обеспечения необходимо наличие контроллера. Для проверки процедур загрузки, конфигурации и функционирования программного обеспечения и спользуется стенд (описание представлено ниже). При серийном производстве, в контроллере размещается базовая конфигурация встроенного программного обеспечения и в дальнейшем, в соответствии с инструкцией по эксплуатации пользователь может провести конфигурацию параметров контроллера (в частности настройки сети) и/или обновить встроенное ПО.

Назначение программного обеспечения

Данное программное обеспечение предназначено для управления контролером Enki-esp32 производства ООО «Энки» (<u>http://enkitech.ru/</u>) в составе телекоммуникационного шкафа для мониторинга его состояния.

Внешний вид контроллера представлен на рисунке 1.

Рисунок 1. Внешний вид контроллера Enki-esp32

Контроллер подключается к сети Ethernet и по протоколу MQTT обменивается информацией с внешней программой MQTT-брокер. На плате контроллера размещаются:

- микроконтроллер WT32-ETH01 для подключения к проводной сети Ethernet и управления элементами контроллера;

- преобразователь напряжения для понижения входного напряжения в диапазоне 48 — 90 В постоянного тока в 5 В для питания элементов контроллера;

- датчик напряжения для контроля наличия напряжения 220В, 50 Гц;

- реле для управления внешней нагрузкой;

- делитель напряжения для измерения внешнего напряжения постоянного тока в диапазоне от 0 до 70 В используя АЦП микроконтроллера;

- три логических входа, для контроля состояния дискретных выходов внешних устройств;

- шина 1-wire для подключения датчика температуры DS18b20.

Программное обеспечение является встроенным программным обеспечением микроконтроллера WT32-ETH01 и реализует следующие функции:

- управляет файловой системой в формате spiffs для чтения файлов конфигурации и структуры web-сервера;

- управляет подключением по Ethernet, используя файл конфигурации с настройками сети;

- управляет работой встроенного web-сервера, используемого для:

1) отражения состояния параметров измеряемых контроллером,

2) загрузки в энергонезависимую память контроллера файла конфигурации и структуры web-сервера,

3) загрузки встроенного программного обеспечения контроллера — firmware;

- опрашивает состояние логических входов контроллера;

- опрашивает состояние АЦП микроконтроллера для измерения напряжения;

- реализует протокол 1-wire и при обнаружении подключения датчика температуры опрашивает измеряемую величину;

- используя сетевое подключение, реализует подключение по протоколу MQTT к MQTTброкеру (внешнее программное обеспечение) по адресу mqtt.nnx.ru используя порт tcp 1883 и публикует в соответствующие темы значения измеряемых величин (описание в таблице ниже). Через файл конфигурации можно изменить адрес и параметры подключения к MQTTброкеру;

- реализует функцию обратной связи (callback) для получения по протоколу MQTT через соответствующую тему команды на включение реле контроллера. Реле получает питание в течение 10 секунд, размыкая нормально-замкнутый контакт с целью перезагрузки внешнего оборудования по питанию;

- реализует функции проверки доступности сетевых устройств по протоколу ICMP. Список IP-адресов для мониторинга связи с ними вносится в файл конфигурации.

Стенд для проведения испытаний

Для проверки процедур загрузки, конфигурации и работы встроенного программного обеспечения необходимо подготовить стенд. На рисунке 2 представлена структурная схема стенда.

Рисунок 2. Структурная схема стенда

В соответствии с указанной схемой к контроллеру через разъемы в его составе подключаются следующие элементы:

- источник питания постоянного тока с напряжением 48В (напряжение может быть выше, в диапазоне от 48 до 90 В);

- вольтметр, или мультиметр в режиме вольтметра для измерения наличия напряжения на выходе реле, с целью проверки функции управления реле. Реле коммутирует входное напряжение контроллера;

- электросеть 220В 50 Гц (одна фаза) для проверки работы датчика напряжения;

- З переключателя, или один 3-х клавишный выключатель освещения, для проверки контроля соответствующих дискретных входов контроллера;

- внешний источник постоянного тока с напряжением в диапазоне от 48 до 70 В. В качестве указанного источника можно использовать аккумуляторные батареи (например 4 шт с напряжением 12 В, включенных последовательно), лабораторный блок питания, или блок питания для сетевой аппаратуры для организации питания по PoE;

- датчик температуры DS18b20, работающий по протоколу 1-wire.

Для проверки стенда необходимо подготовить компьютер, или ноутбук с наличием проводного сетевого интерфейса Ethernet (RJ45) подключенный к проводному сетевому интерфейсу контроллера.

Пример собранного стенда представлен на рисунке 3.

Рисунок 3. Пример стенда проверки контроллера Enki-esp32

Процедура конфигурации и загрузки программного обеспечения в контроллер

Необходимо использовать любой компьютер, или ноутбук с наличием порта Ethernet и OC Windows, или Linux. Для хранения конфигурации и структуры web сервера используется flash память контроллера. Для работы с файлами программное обеспечение контроллера использует файловую систему spiffs. Для загрузки в контроллер файлов конфигурации их необходимо преобразовать в бинарный файл. Для этих целей используется утилита mkspiffs.

Для установки утилиты на компьютер необходимо, используя ресурс <u>https://github.com/igrr/mkspiffs/releases</u> загрузить файл mkspiffs-0.2.3-arduino-esp32-win32.zip (при использовании Linux выбрать соответствующий файл).

Используя pecypc <u>http://repo.tvksoft.ru/enki/ enki.zip</u> загрузить на компьютер файл enki.zip.

Разархивировать содержимое архивного файла в любой каталог ОС компьютера.

Разархивировать в этот же каталог содержимое mkspiffs-0.2.3-arduino-esp32-win32.zip. Результатом будет следующий состав файлов:

- файл mkspiffs.exe (утилита для формирования бинарного файла),
- файл firmware.bin (бинарный файл программного обеспечения контроллера),
- каталог data содержащий:
 - файл index.html (html страница web сервера, отражающая измеряемые величины),
 - файл enki.png (логотип компании для web сервера),
 - файл conf.json (файл конфигурации контроллера).

Для настройки сети и указания ID устройства по которому будет формироваться тема в публикациях через MQTT нужно отредактировать файл conf.json следующего содержания: {

```
"ID": "Test",
"IP": "192.168.200.246",
"GW": "192.168.200.1",
"SN": "255.255.255.0",
"DNS": "8.8.8.8",
"STATUS_RELE": "rele_status",
"K1": "G",
"K2": "AC",
"K3": "BAT",
"DU": "DU",
"ssid": "srv_cam",
"password": "srv_cam_test",
"mqttServer": "mqtt.nnx.ru",
"mqttPort": "1883",
"mqttUser": "login",
"mqttPassword": "passwd",
"http_username": "admin",
"http_password": "admin",
"host_ping": ["8.8.8.8","1.1.1.1","4.4.4.4"]
```

}

В следующей таблице приводится описание используемых параметров конфигурации:

N₂	Параметр	Значение	Примечание
1	ID	Идентификатор под которым проходит подключение к MQTT- брокеру и формируется название темы	Например если ID=Test, а цифровой вход K1 будет иметь имя в теме K1 - контроллер будет публиковать в тему Test/K1 значение cocтояния K1. В итоге значение ID — связывает публикацию с именем вашего контроллера. А подтема связывает соответствующий параметр. Общая формула: Имя_контроллера/Имя_параметра Если к цифровому входу K1 подключен, например геркон и для удобства в название подтемы включено имя Gercon, то контроллер будет публиковать значение в тему Test/Gercon.
2	IP	Сетевой адрес назначенный контроллеру	
3	GW	Сетевой адрес шлюза сети	

4	SN	Маска сети	
5	DNS	Сетевой адрес сервера DNS	
6	STATUS_RELE	Название подтемы, под которой будет публиковаться текущее состояние реле	В итоге тема публикации будет складываться из значений ID и STATUS_RELE. Например: Test/rele_status
7	K1	Название подтемы, под которой будет публиковаться текущее состояние цифрового входа К1	Например: Test/Gercon
8	K2	Название подтемы, под которой будет публиковаться текущее состояние цифрового входа К2	Например: Test/UPS_Uin
9	К3	Название подтемы, под которой будет публиковаться текущее состояние цифрового входа КЗ	Например: Test/Battary_low
10	DU	Название подтемы, под которой будет публиковаться текущее состояние датчика напряжения	Например: Test/DU
11	ssid	Имя WiFi сети при работе контроллера в режиме точки доступа.	Требуется версия ПО контроллера (firmware — прошивка) с
12	password	Пароль для подключения к сети WiFi контроллера	поддержкой WiFi
13	mqttServer	Имя MQTT сервера, к которому будет подключение контроллера	Например: mqtt.nnx.ru
14	mqttPort	Порт МQTT сервера	1883
15	mqttUser	Логин для подключения к MQTT серверу (брокеру)	
16	mqttPassword	Пароль для подключения к MQTT серверу (брокеру)	
17	http_username	Логин для входа в web-интерфейс	В базовых настройках логин: admin
18	http_password	Пароль для входа в web-интерфейс	В базовых настройках пароль: admin
19	host_ping	Массив IP-адресов для которых необходимо мониторить сетевой доступ к ним по протоколу ICMP (командой ping).	Пример формата перечисления значений в массиве: ["8.8.8.8","1.1.1.1","4.4.4.4"] Количество адресов не более 5. Контроллер выводит результаты на web-интерфейс и публикует по протоколу MQTT подтемы со значением адреса. Пример: тема Test/8.8.8.8 Если значение 0 — нет связи.

Если значение 1 — связь есть	
------------------------------	--

Необходимо уточнить настройки сети исходя из вашего подключения. Например у вас используется офисная сеть и на данный момент ваш компьютер имеет выход в интернет. Необходимо использовать схожие настройки, запросив свободный ip-адрес у сетевого администратора. В параметре ID нужно использовать уникальное значение. Есть вероятность, что простой идентификатор уже занят другим клиентом MQTT. Можно использовать любую комбинацию символов. Например цифры из текущей даты и времени, пример 141020221309 (от 14 октября 2022 13 часов 9 минут).

Уточнить данные:

"mqttUser": "login",

"mqttPassword": "passwd"

исходя из выданных учетных данных для подключения к брокеру mqtt.nnx.ru. Если используется другой MQTT-брокер, уточнить значение полей:

"mqttServer": "mqtt.nnx.ru",

"mqttPort": "1883".

Строка конфигурационного файла "host_ping": ["8.8.8.8","1.1.1.1","4.4.4.4"], представляет список ip-адресов по которым необходимо проверять статус подключения по протоколу ICMP. Количество адресов может быть от 1 до 5. При тестировании можно указать необходимые адреса. В примере используются публичные адреса. Для связи с ними необходимо наличие подключения к сети интернет. Адрес 4.4.4.4 не дает ответ на команду ping, поэтому в рамках тестов у него должен быть статус - нет связи.

Сохраните изменения.

Запустите командную строку windows, перейдите в каталог размещения mkspiffs.exe Выполните команду:

mkspiffs.exe -c data -b 4096 -p 256 -s 0x170000 spiff.bin

Итог — формирование файла конфигурации spiff.bin на основе файлов, размещенных в каталоге data.

В контроллере по умолчанию установлен адрес 192.168.0.100.

Для загрузки программного обеспечения и конфигурации необходимо подключить контроллер к компьютеру по сети Ethernet.

Для удобства запишите сетевые настройки компьютера вашей сети.

Настройте сетевое подключение компьютера на сетевой адрес 192.168.0.2 указав сетевую маску 255.255.255.0.

Запустите браузер на вашем компьютере и откройте ресурс:

192.168.0.100/update

Откроется интерфейс (рисунок 4):

Рисунок 4. Вид интерфейса для обновления ПО и конфигурации.

В открывшемся интерфейсе выберите Firmware и через кнопку Обзор выберите файл firmware.bin. Начнется процесс загрузки программного обеспечения контроллера.

После завершения контроллер перезагрузится автоматически. Необходимо вернуться на интерфейс ресурса 192.168.0.100/update и выбрать режим Filesystem. Через кнопку Обзор выбрать файл spiff.bin.

Дождаться окончания загрузки. После завершения контроллер автоматически перезагрузится и будет работать с новыми сетевыми настройками.

Необходимо вернуть на компьютере прежние сетевые настройки.

Далее подключить компьютер и контроллер к офисной сети с выходом в интернет.

На компьютере зайти браузером на новый ір-адрес контроллера указав только адрес.

Откроется страница с измеряемыми параметрами как на рисунке 5.

← → C ŵ ○ 脸 192.168.200.246	
🜣 Часто посещаемые ؼ Начальная страница 🗅 БГ 🗅 Платы	🗅 Kuber 🗅 Бинар 🗅 JS
🔶 Энки	Test
Температура:	25.4
Дверь шкафа:	закрыта
Напряжение 220 В на вводе:	нет
Напряжение 220 В на ИБП:	нет
АКБ:	заряжен (> 42 В)
Напряжение на АКБ:	56.0
Связь с 8.8.8.8	есть
Связь с 1.1.1.1	есть
Связь с 4.4.4.4	нет

http://enkitech.ru/

Рисунок 5. Вид интерфейса измеряемых параметров.

Процедура проверки функционирования программного обеспечения контроллера

Процедура конфигурации контроллера и подключение к web-интерфейсу с учетом назначенного сетевого адреса (предыдущий этап), является элементом проверки следующей части функционирования ПО контроллера:

- проверки работы размещения файлов конфигурации в файловой системе spiffs;

- чтения параметров из файла конфигурация и обработки формата JSON;

- проверки работы сетевого интерфейса;

- проверки работы web-сервера и авторизации пользователя.

Поскольку контроллер предназначен для мониторинга состояния телекоммуникационного шкафа, web-интерфейс (Рисунок 5) отражает информацию с учетом следующего распределения цифровых входов контроллера:

К1 — опрашивает состояние концевого выключателя, или геркона в составе двери шкафа и отражается в интерфейсе как «Дверь шкафа: открыта/закрыта». Состояние «открыта» — соответствует логической 1, состояние «закрыта» - логическому 0.

К2 — опрашивает состояние контакта реле ИБП в составе шкафа и отражается в интерфейсе как «Напряжение 220 В на ИБП: есть/нет». Состояние «есть» — соответствует логическому 0, состояние «нет» - логической 1.

КЗ — опрашивает состояние контакта реле ИБП, сигнализирующего о разряде АКБ в составе шкафа и отражается в интерфейсе как «АКБ: разряжен (< 42 B) / заряжен (> 42 B)». Состояние «разряжен (< 42 B)» — соответствует логическому 0, состояние «заряжен (> 42 B)» - логической 1.

DU — опрашивает состояние датчика напряжения контроллера, подключенного к электрическому вводу — на входные клеммы автомата шкафа и отражается в интерфейсе как «Напряжение 220 В на вводе: есть/нет». Состояние «есть» — соответствует логическому 0, состояние «нет» - логической 1.

Для проверки работы контроллера по протоколу MQTT на компьютер необходимо установить MQTT клиент — mosquitto. Загрузите официальный дистрибутив с ресурса <u>https://mosquitto.org/download/.</u>

Для OC Windows это файл mosquitto-2.0.15-install-windows-x64.exe.

Запустите процесс установки и согласитесь с установленными параметрами по умолчанию.

Откройте командную строку Windows и выполните команду:

cd C:\Program Files\mosquitto

Далее, уточнив параметр ID, который был указан в файле конфигурации контроллера, выполнить команду:

/usr/bin/mosquitto_sub.exe -h mqtt.nnx.ru -v -t ID-из-файла-конфигурации/# -u "ваш логин" -P "ваш пароль"

Параметр /# означает отражать все подтемы входящие в тему «ID-из-файла-конфигурации». На экране будут строки вида:

«ID-из-файла-конфигурации»/temp 25.4

«ID-из-файла-конфигурации»/ADC 56.0

«ID-из-файла-конфигурации»/8.8.8.8 1

«ID-из-файла-конфигурации»/1.1.1.1 1

«ID-из-файла-конфигурации»/4.4.4.4 0

«ID-из-файла-конфигурации»/К1 0

«ID-из-файла-конфигурации»/К2 1 «ID-из-файла-конфигурации»/К3 1

«ID-из-файла-конфигурации»/DU 1

№ п.п.	Метрика	Параметр	Тема	Статусы
1.	Температура	⁰С (градусы по Цельсию)	ID/temp	значение температуры до 10-го знака (например 25,5)
2.	Измеряемое напряжение постоянного тока	величина напряжения в Вольтах	ID/ADC	значение напряжения до 10-го знака
3.	Проверка связи с ір адресом (в примере указаны три адреса 8.8.8.8, 1.1.1.1, 4.4.4.4)	0/1	ID/ соответствующи й_адрес	0 — нет связи 1 — есть связь
4.	Состояние дискретного входа 1	0/1	ID/K1	0 — закрыта 1 — открыта
5.	Состояние дискретного входа 2	0/1	ID/K2	0 — есть 1 — нет
6.	Состояние дискретного входа 3	0/1	ID/K3	0 — разряжен (< 42 В) 1 — заряжен (> 42 В)
7.	Наличие напряжения 220 В на датчике напряжения	0/1	ID/DU	0- есть 1- нет
8.	Управление реле контроллера для управления нагрузкой (изменение состояния на 10 секунд).		ID/Rele	Отправить (опубликовать) в указанную тему 1 для перезагрузки

В следующей таблице указаны значения параметров:

Сравнить значения отражаемые в web-интерфейсе со значениями в командной строке. Позиция 8 — управления реле, по отношению к контроллеру является входящим параметром и не отражается в web-интерфейсе. Подразумевается, что оператор отправляет команду удаленно на контроллер, используя публикацию в соответствующую тему по протоколу MQTT.

С помощью тестового оборудования провести следующие тесты:

- взять датчик температуры в руку, проверить в web-интерфейсе и командной строке изменение значения температуры;

- тестовым переключателем изменить состояние дискретных входов и проверить в webинтерфейсе и командной строке изменение значений;

- подключить датчик напряжения 220 В в электросеть, соблюдая правила электробезопасности. В web-интерфейсе и командной строке проверить изменение соответствующего значения;

- подключить тестовый блок питания, или АКБ и проверить отражения значения напряжения в web-интерфейсе и командной строке. При необходимости измерить для сравнения напряжения тестером;

- из командной строки выполнить команду:

/usr/bin/mosquitto_pub.exe -h mqtt.nnx.ru -t «ID-из-файла-конфигурации»/Rele -m "1" -u "ваш логин" -P "ваш пароль"

Реле контроллера должно переключить контакты и через 10 секунд вернуться в прежнее состояние. Будет характерный звук срабатывания реле. В этом тесте контроллер выступает в роли подписчика на тему «ID-из-файла-конфигурации»/Rele и при поступлении значения 1, отрабатывает команду отключения реле на паузу в 10 секунд. Поскольку контроллер в цикле программы выполняет последовательно разные операции, в том числе проверяет подключение сетевых устройств, может пройти некоторая пауза с момента публикации темы управления реле, до момента его переключения.